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Abstract

Generalizations of the virial theorem are derived: in atomic physics, in
systems including electromagentic radiation, in Newtonian gravitation, and
general relativity and also some types of nuclear forces. The cases discussed
are limited to potentials which can be produced by the exchange of one
particle which include potentials of the form 1/r. The method used is to set
equal a change in energy produced by an infinitesimal similarity

transformation to a change of energy obtained by a first-order perturbation.

The Simple Virial Theorem in Atomic Structures

A primitive derivation of the virial theorem in atomic physics can be
obtained by considering an infinitesimal increase of all masses by a factor
1+ u (with pu<< 1)

m+m (1 +y)

*Nork performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract #W-7405-Eng-48.



while leaving all other relevant constants (e, W, ¢) unchanged. A
similarity transformation, in which distances (r), momentum values (p),

velocities (v), energies (E), and times (t) are replaced by

r+r (1 -u)
p+p (1+u)
v+ vy

E+ E (1 +y)

t+t (1 -4),

will leave the Schrédinger equation unchanged. The change in energy uE can
be written in terms of potential energy (Epot) and kinetic energy (Ekin)

uE = Wk + ut

pot kin °

The same change in energy may be derived by first-order perturbation

which leaves the potential energy which is proportional to ezlr unchanged,

while the kinetic energy pzlm is perturbed:

2 2
Er&HO-w .

It is to be noted that in fifst-order perturbation p remains unchanged,
while m is changed into m (1 + u). Setting equal the change in energy

(AE) obtained from the similarity transformation and from first-order

perturbation we obtain



8E = ME ot * ¥Ekin = HEkin

which leads to the most simple form of the virial theorem*

E + 2E =0 .

pot kin

If the system, which may be macroscopic, is under pressure (P) and is

confined to a volume (V ~ r3) then in the similarity transformation the

volume will change as
V+V (1 -3u) .

In this similarity transformation the energy will still change in the same way
as above, though the volume is changed. To the previous result of first-order
perturbation we should now add the work by the pressure (P) due to the volume

contraction (3uV) which gives

uEpot *uEpjp = Byt 3uPY

or

Eoot * 2Egqn = 3PV (1)

which is the usual form of the virial theorem. In this equation as well as in
the following analogous ones all terms on the left-hand side must be summed or

integrated over the components of the system.

*A similar derivation is based on the variational theorem. If all distances,
r, are replaced by r (1 - u), where u is infinitesimal, then the change in
the potential and in the kinetic energy will be respectively uEpoy and

2u Egjpe According to the variational principle, the sum of these two

terms must be zero.



This derivation is valid not only for the actual system but also for the
results of approximate calculations such as obtained from the Hartree method,
the Thomas-Fermi equation, or the refined form of that equation in which
exchange forces are included.? It is equally valid in statistical mechanics
and can be applied to quasi-ergodic systems which return in a finite time

within arbitrarily close limit to any earlier location. In this case the time

average of each quantity (Epot' Ekin) is considered.

Is the Result of the Similarity Transformation Unique?

Instead of changing m, we may have changed e, K, or c. If the latter
quantities are changed, however, one should conserve the fine-structure
constant ezlhc, otherwise, the nature of our problem will no longer be
the same. We shall now show that any of the permissible changes (leaving

ez/uc unaltered) will lead to the same virial theorem.

It is clear that if several of the constants (m, e, W, c) are changed
by infinitesimal amounts, the results are additive, both in the energy change
due to the similarity transformation and in the energy change due to
first-order perturbation. Instead of these changes, one may construct another
three in which of the three dimensions -- length, time, and mass -- only one
changes. We shall now show that of these three only one leads to a

non-trivial result: if we change the lengths (r).

It is to be noted that in the discussion given in the first section all
three dimensions changed. It is also obvious that if the length (r) is

unchanged, the volume (V) will not change and the term 3PV cannot appear.



Furthermore, if the distances and, therefore, the gradients of the wave
function remain unchanged, in the wave function of the Schrddinger (or Dirac)
equation during the similarity transformation, only the constant (m, e,

A, c) can be changed. But in the perturbation procedure of the first order
the change of the same constants are taken into account exclusively; thus, the

two approaches give identical results. Nothing new can be derived.

By contrast if the distances are changed, this has a direct effect on the
similarity transformation but not on the first-order perturbation. The
perturbation theory is affected only by the change of the constants, while in
the similarity transformation both the change of the constants and the change
of the variables play a role. In this way only one relation can be derived:

the virial theorem.

Magnetic Energy

The virial theorem is applicable in its usual form only to central forces
having a 7" dependence. We consider in this paper 1/r which is derivable
from a 1/r potential. Magnetic forces between moving charged particles are
not central and spin-orbit or spin-spin forces have a different dependence on

r. The method used here is, however, readily applicable.

In the similarity transformation currents remain unchanged and the
magnetic moments of spins change as 1/m and are, therefore, multiplied by
(1 ~u). Since r is also multiplied by (1 - u) and since orbit-orbit,
spin-orbit, and spin-spin interactions vary as 1/r, l/rz, and 1/r3,
respectively, all these interactions change as (1 + u), that is like all
other energies. The infinitesimal change in energy in the similarity

transformation will therefore be



HEsot + HEsp * HE,

where Em is the magnetic energy and Epot is 1imited to the Coulomb

interaction and no externally imposed fields are assumed.

In first-order perturbation theory we must leave r values, gradients and
momentum values unchanged but velocities (v p/m) and currents change as
(1 - ) and magnetic moments of spins change in the same way. Therefore,

the change in Em is proportional to l/m2 and can be written as -ZuEm.

The generalization of Eq. (1) is

Enot * 2Eqn * 36, = 3PV . (2)

This equation may be applied to ferromagnets or superconductors.

If external electromagnetic field and potentials are imposed, the usual

term 3PV should be replaced by a more involved expression.

One may then apply £q. (3) to more complicated situations including a
plasma held together by external electromagnetic forces (in most of the
research on controlled fusion only external magnetic fields are applied). In

that case the right-hand side of Eq. (3) is to be replaced by

JPr - do +.fpe z’ext' Tdt +J'('f x.f’?) o Tdt +

Iﬁ a{ext. T‘mag) > rdt (3a)



Here the first term is an integral to be taken over the surface of the finite

volume to which the virial theorem is applied. The vector T 1is drawn from

the surface element over which we integrate to an arbitrary fixed point

and do is a vector perpendicular to the surface element and pointing inward;
it has the absolute value do. It is easy to see that this integral is equal

to 3PV. In the second term, Pa1 is the electric charged density and
& ext is the electric field imposed by external sources. The vector T points
from the volume element to a fixed position. In the third term the current

density is Y and J;Ext is the_independently given magnetic field, usually the
confining agent acting on the plasma. Finally, the last term is due to the
force of the inhomogeneous magnetic field and upag is the magnetic moment of
the spin. Here the gradient operator ¥ is to be applied to the magnetic
interaction(di;xt . Hmag)' A1l integrations have to be carried out over

the volume of the plasma. In experiments involving a high temperature plasma,
the pressure, P, is usually zero since the plasma is not supposed to be in
contact with the container. The whole right-hand side is the sum of all the

forces imposed on the plasma volume under consideration.

The modified form of Eg. (3) can be applied to a part of a system where
the left-hand side is summed or integrated over the part of the system under
consideration while the right-hand side describes the forces due to all other
portions of the whole system. Our approach to the virial theorem would then
involve an application of the similarity transformation to the total system.
In the perturbation theory the similarity changes still apply to the
“external® parts while in the "internal® part only m is replaced by m (1 +

u) and the work accomplished by the motion of the "internal" part relative



to the "external” parts must be added. This procedure could be useful in

numerical calculations in that more crude zoning may become permissible.

If one wants to verify that application of the virial theorem to parts
add up to the virial theorem for the whole system, orbit-orbit, spin-orbit,
and spin-spin interactions must be separately considered. For instance, the
factor 3 in the term 3Em for the spin-spin case is due to the l/r~3
interaction and its influence on the term due to the work considered in our

procedure. The other terms in the 3Em expression have a more complex origin.

Electromagnetic Radiation

So far we have included only stationary, or slowly varying, electric and
magnetic fields. It seems reasonable that the energy of electromagnetic

radiation behaves Tike the potential energy. This is actually the case.

Indeed, the electromagnetic radiative energy density
& (8% v o)

changes in the similarity transformation 1ike (1 + 4u) since & and #
change due to

r+r (1 -u)
as

e+ & (1 +2u)

H o+ (1 +2u) .

If we multiply the energy density by the volume element dt, which changes as

(1 - 3u) and integrate, we obtain for the electromagnetic radiation energy



1, 02 |
Eem‘fii(" +.fo) dt
and the similarity change

Eem * Eep (1 + 1) .

That is the radiation energy changes like all other energies.
In the perturbation calculation Eem remains unchanged.

Therefore, Eq. (2) may be replaced by

E

ot * Eem + Zyqp + 36, = PV . (3)

This equation may be applied to stars in which radiation may account for a
considerable fraction of the energy in a steady state (or quasi-ergodic state,

j.e., a variable star), though gravitational energy has to be included. This

will be done farther below.

Relativistic Equations

If we want to apply our equation to cases where special relativity must
be taken into account, the similarity transformation remains unchanged But,

in the first-order perturbation calculation Ekin and Em must be reexamined.

For the first of these we may write

- 2,2 , .2.241/2
Ein = [(me ). +¢“p°]
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where m is the rest mass and mc2 has been included in Ekin‘ Tne change in

kinetic energy AEkin due to an infinitesimal change in m will become

AE . = [(11 + u} mcz)2 + czpz]1/2 - [(mcz) +c pz]”2

kin

(mc ) .

k1n ki

In considering the portion of Em which is the current-current inter-
action, this quantity is not simply proportional to l/mz but to

2 2
(Ec ) . For the change of the relevant part of AEm due to first-order
kin

perturbation (where the momentum p is kept constant) we may, therefore, write

E 2
kin ) =
8 = E [(¢ i, -1]=220Ey (1-:—] .

kin

Using the calculated values of AEkin and AEm one obtains for the

relativistic form of the virial theorem

E +E

pot * Eem * Exin [ ( )]+E,,,[l+2("-&°—)]-3pv. (4)

kin

what has been said so far about the relativistic case relates to
macroscopic situations. The most discussed case in quantum mechanics is the

Dirac equation for a single particle. Straightforward application of our

procedure gives

E= mcz F = [(\P]W]) + (‘pz'\l’z) - (“’3”’3) - (\P4|\|J4)] mcz



n

where B is the Dirac operator which is positive for the first pair of
components and negative for the second pair. The left-hand side is obtained
from the similarity transformation while the right-hand side is derived by the

perturbation theory where only the term Bmc2 is changed.

If we subtract this relation from the Dirac equation averaged over a

stationary state we obtain the more usual form of the virial theorem]

»> >
Epot +cae*p=0.

Here ca stands for the velocity and 3 for the momentum.

One may get a different generalization of the virial theorem by deriving
the Klein-Gordon equation from the Dirac equation. For sake of simplicity,

this will be done in the absence of magnetic fields. The result is

2 . _ (nl.2 2.4
(E - Egpe)™ ¥ = (pc +mc’) y .
This holds, of course, for any single-particle problem. If the average is

taken over a stationary state and if, as is permissible for Epgt =-} the change
m+m (1 + u) leads to E~+ E (1 + u) then the perturbation theory gives

24
E (E - Epot) =m-c

where E = (YIE__.1y). The solution of this equation yields for Epot <0

pot pot

1/2

1 2 2.4
E = i'[E;;; + (E;;: + 4 mc”) ]
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where the positive square root should be taken. The reason for this relatively
simple result is that the term Epotz dropped out when taking the difference
of energies after and before the similarity transformation. This would not

have been possible if higher power of E - Epot had been taken.

An interesting though bizarre consequence of our potential-theory result

2
is the situation arising if Epot > m2c4. In this case the approximate

result is

It is obvious that any stable solutions must have a positive energy. For

2 > m2c4 it is by no means obvious that stable solutions exist. It may

Enot
be possible to assume a continuum of such solutions with infinitely many modes

near r = 0. We see, in addition, that the values of E will be inversely

proportional to lEpot"

The quantum-mechanical, many-body problem is essentially unsolved. To

approximate solutions, like the Hartree method, generalizations of the virial

theorem can be app]ied.3

Gravitation and General Relativity

In our derivation of the virial theorem for atomic structures we assumed
that the charge of the electron, e, remained unchanged, but we replaced all
masses m by m (1 + u). To retain the argument in the same form we must
assume that the gravitational interaction of two masses sz must not

change. Hence, we have



13

G+6(1-2u) .

Designating the potential energy of gravitation by Egrav one obtains for

isolated systems in the non-relativistic approximation

E +E +E + 2E

pot ~ “em ~ “grav kin = 3PV ()

where Ekin includes macroscopic as well as atomic and subatomic motions.
Nuclear energies are not taken into account and for the sake of simplicity
energy Em is neglected* in Eq. (5). In the obvious applications to stars,
globular clusters, and galaxies P = 0 and the right-hand side of Eq. (5)
vanishes. The same conclusions also apply to periodic and quasi-ergodic
motion such as cepheid variables and rotating stars or galaxies. In this case

all terms must be replaced by their time averages.

One can also apply the virial theorem to a part of an astronomical
object, for instance, to an arbitrarily defined volume within a star. Then

the right-hand side of Eq. (5) will not be zero but will have the form

JPr « o + J(3 ot T ) pdt (5a)

e

where the first term becomes 3PV provided the pressure is a constant over the
surface which in the present case is not always true. In the second terms
Goxt® is the gravitational acceleration due to external masses and p the

density. The integration is to be carried out over the volume.

*Jts inclusion would be routine.
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It is interesting to note that if a star is subdivided into two regions,
an internal sphere and an external shell, then the interaction potentials
occur twice. This wrong factor two is corrected when the second term in the

expression (5a) is taken into account. Similar considerations apply to Eq.

(3a).

The application to general relativity is remarkably simple. Actually the

similarity transformation may be used without change.

To see this one has to consider the definition of space curvature. The
relevant point is the angular change of a vector carried around an
infinitesimal surface in four-dimensional space, divided by the area of that
surface. This curvature is proportional to the gravitational constant G and
the energy-momentum-tension tensor which is an energy per unit volume. Thus,

we get
E ﬂ-ﬁgl (1+y) .
G-:g'h 3 1+20 .

On the other hand, the angular change of the vector is the curvature times the
area since r and t change as 1 - u the area is proportional 1 - 2u. Thus,
the change in the direction remains unaltered by the similarity transformation

if the vector is carried around a scaled-down area.

The first-order perturbation theory may be applied in an unchanged

fashion. Thus, one is led to the equation for an isolated system

| 2 2 2 2
S (L. Ry pc .
Epot * Eem * Ekin 0 [Ekin J Epot + Eem Ekin o . (6)
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In Eq. (6) Epot includes the Coulomb energy as well as all forms of the

gravitational energy. We again use Efin = (mcz)2 + czp2 which leads to the re-~
writing of the third term in Eq. (6). This term is to be summed over all particles

in the isolated systems (star, cluster, or galaxy) under consideration.

If the system is not isolated but is under the influence of external pressure
and externally imposed gravitational forces, the right-hand side of Eq. (6) will
not be zero but will be of the same form as stated in the case of Eq. (5). It
should be recognized, nhowever, that in general relativity there is no obvious way
in which to separate out the gravitation forces Gaxt due to the external masses.

Indeed, the solutions in general relativity are supposed to be self-consistent.

A1l energies should be given the value as seen by one selected observer who is
at rest relative to the observed sytem or, in case of periodic motion, relative to
the average position of the system. For different observers terms in Eq. (6) will

change due to a change of the gravitational red-shift which will amount to a common

factor in all terms.

Equation (6) does not apply to black holes, not even to very massive black
holes (with a correspondingly big radius) in which high densities such as those
occurring in atomic nuclei need not be considered. OnIthe one hand, the interior
of a black hole is unobservable. On the other, the formation of a black hole needs
infinite time; though configurations closely approaching a black hole can be
obtained in a short time, systematic, non-ergodic velocities approaching light
velocity are necessarily involved. Al1 our considerations apply only to systems

which remain in or return to the same state, at least in good approximation.
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Application to Nuclear Forces

There is no indication that forces which increase the separation of the
interacting particles such as occur in the description of quarks in quantum
chromodynamics can be treated by any method resembling the virial theorem. On
the other hand, older theories describing nuclear forces based on the exchange

of mesons might be treated in analogy with the procedures used in this paper.

We again perform a similarity transformation in which all masses are
changed by a factor 1 + u. These masses include those of the Yukawa
particles which are exchanged. The potentials due to these particles are of
the Coulomb type with an added exponential factor e - %;-where Ty is the Yukawa
distance and is inversely proportional to the mass of the Yukawa particle.
The similarity transformation holds with all masses changed by a factor 1 + u
and all distances changed by a factor 1 -.u. The masses include My » the

Yukawa mass, and the distances, the Yukawa radius, Tys which changes by

1 - u. The result is an equation similar to Eq. (1) except that on the

left-hand side a term will appear-g—-EY, where EY is the Yukawa potential and y
Y
is again the Yukawa radius. In this expression r is the distance between a

pair of nucleons and a sum over all the pairs has to be taken.

Actually, several terms of this kind will have to be introduced,
depending on various Yukawa masses that can be exchanged between nucleons. In
this way Yukawa-type repulsive potentials may be introduced which, of course,

have in general a shorter range than the attractive interactions.
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Tne virial theorem can be further generalized to the older approaches of
nuclear forces when one introduces orbit-orbit interactions, spin-orbit inter-
actions, and spin-spin interactions or tensor forces. The appearance of these
various forces will be simialr to what we discussed in connection with Eq. (3)
and in relation to the magnetic term Em' The discussion here is a simple
translation of what has been said in connection with Eq. (3). In every case,
the similarity transformation will occur as usual with the only exception

being that my and ry have to be changed as described. In every case, therefore,

additional terms of the form-g- EY will make their appearance where EY stands
Y

for the various kinds of Yukawa interactions describing plain interactions,

orbit-orbit interactions, spin-orbit interactions, and spin-spin

interactions. The latter three will furthermore carry a factor 3 as did Em

in Eq. (3).

For clarity we repeat the reasons for their occurrence. Every one of
these terms will occur with a factor 1 due to the similarity transformation.
In addition, in case of the orbit-orbit interactions perturbation theory will
add the term multiplied by a factor 2 due to the perturbation originating from
the changed mass of the nucleons which in perturbation theory corresponds at a
constant momentum to a decrease of the velocity of the interacting particles.
Since, however, it is this velocity which gives rise to the orbit-orbit
interaction, the perturbation theory will give a factor -u on the right-hand
side of the equation which can be transferred to the left-hand side with a

positive sign and will furnish two more terms of the orbit-orbit type due to

the two interacting particiles.
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In the case of the spin-orbit and spin-spin type of interactions, the
exponential factors are preceded by a llr2 or l/r3 dependence, respectively.
In order to maintain the similarity transformation, the forces due to the spin
as well as the forces due to the velocity of the motion have to be reduced by
a factor 1 - u. This will result in all cases in a further factor 2u due
to the perturbation theory which will in the end give rise to a factor 3 in

analogy with the one obtained for E_ in Eq. (3).

It might be mentioned that the spin-orbit forces have played a
particularly strong role in the shell theory of nuclear structure. This is
probably due to the circumstance that the spin-orbit forces are strong when
the gradients of the potentials become pronounced. The Yukawa-type behavior

increases these gradients.

The end result is an expression similar to €q. (3) in which, however, on

the left side Yukawa-type additions of the appearance %—-EY* have to be added
' Y

for every Yukawa-type force whether it be a simple type interaction or one

analogous to the terms designated as Em in Eq. (3).

It would be tempting to apply these considerations to the interior of
neutron stars. This would appear to be possible by using virial-type
expressions on volume elements within the neutron star and deriving sound

velocities by deriving expressions for %§-= lﬁngg where p is the mass density
c

and E the energy density. In some approximations, one can see how a sound

ve]ocity% js approached; this sound velocity is, indeed, characteristic for

ideal gases at very high temperatures.
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The appearance of strong repulsive forces and the corresponding Yukawa
potentials which can become predominant at high pressures can give rise in a
formal sense to velocities higher than the velocity of light. One of my old
memories is that Fermi asked me in 1951 or 1952 how probable it was tnat
within ten years a velocity would be discovered exceeding light velocity. My
answer was one in a million. Fermi then told me he thought it was 10%, the
well known value for a Fermi miraclie. Unfortunately, I remain convinced that

the probability for the next ten years is even now 10‘5.

The derivation of sound velocity discussed in previous paragraphs seems

actually to be inapplicable for velocities approaching the velocity of light.
The expression-gg is defined in a static way, but is based on the exchange of

mesons. The circumstance that these mesons themselves cannot move faster than
light should make the derivation based on static compressibilities
inapplicable. We seem to have reached in this regard the limits of the

usefulness of the methods that are applied in this paper.

*It is noted that these extra terms should in no case be multiplied by a
factor 3 since they are obtained from the similarity transformation and no
contribution is made by the perturbation theorem.
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Conclusion

Many of the resuits obtained in this paper are repetitions of the
obvious. Others approach the absurd. I am deeply indebted to my friend, Mort
Weiss, who prevented me from going over the edge and also encouraged me by his
interest in what appeared almost obvious. I hope, particularly with his help,

to have touched upon some subjects which are neither obvious nor absurd.
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